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Mobile wireless networks present unique challenges to the development of tractable models that can incorporate
both spatial and temporal correlations in demand induced by subscriber mobility. Space-time autoregressive time
series modeling is a promising inductive method that uses a small number of parameters and can be used for
online monitoring and load prediction. In this paper, we develop space-time autoregressive models for several
wireless network scenarios. We evaluate the ability of the space-time autoregressive models to model the spatial
and temporal correlations in the network and show that for the scenarios depicted, the space-time models perform
well.

1. Introduction

The recent rapid growth in the number of wireless applications, along with the expectation that wireless net-
works support the same high quality of service provided by wireline networks, present major challenges to service
providers who must support these high quality services in a seamless fashion at a reasonable cost. Software ra-
dio introduces the ability to dynamically control the wireless interface and is expected to have a huge impact on
performance. Ensuring QoS will require innovative solutions with respect to the development of new architectures
and protocols, and will provide unique challenges in developing tractable models that can incorporate both spatial
and temporal correlations in demand induced by subscriber mobility.

The cellular architecture has been developed to maximize spectrum utilization. Early analytic models focused
on the behavior of a single cell [1–3] based on assumptions that arrival traffic was Poisson and homogeneous, mo-
bility patterns were random, and cell sojourn times were exponentially distributed. Models developed under these
assumptions provided a tractable analysis and produced reasonably accurate results for first generation wireless
networks.

Since there exists no product form solution for multiple cell topologies and the resulting state space explosion
prohibits an exact analysis of the network [4,5], Kelly [4] proposed a fixed-point approximation (FPA) based on the
Erlang blocking formula. This method provided a good approximation for blocking probabilities in large networks
consisting of multiple cells with low subscriber mobility [6], but has been shown not to be accurate when spatial
correlations are strong [7–9].

There has been significant research activity in the utilization of the temporal and spatial characteristics of the
physical medium to improve network capacity [10–13]. In this paper we take on a more global approach and
concentrate on the modeling and prediction of bandwidth demand as a result of subscriber mobility that is spatially
and temporally correlated over a finite time horizon.

To ensure QoS, a number of schemes, most based on priority and admission control, have been proposed. These
models typically describe the steady state of the network and enact congestion control or admission policies based
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on the current state of the network. In this paper we propose a method of predicting the future network state from
which we can formulate network management policies.

Autoregressive time series analysis is a powerful inductive modeling tool used to forecast resource demand based
on real-time measurements over a finite time horizon. Moreover, these models can readily be identified based
on empirical measurements using Kalman filtering [14], least squares methods, maximum likelihood estimates
(MLE), or through the use of artificial neural networks [15]. However, autoregressive time series analysis models
of networks are generally limited to temporal models [16,17].

In [18,19], Pfeifer and Deutsch present a family of multi-variate autoregressive moving average models called
space-time autoregressive integrated moving average models (STARIMA). Based on the work of Martin and Oep-
pen [20], they can capture both temporal and spatial relationships in systems. They have been shown to be a
powerful tool in developing parsimonious prediction models in a number of diverse applications from predicting
river levels to automobile traffic modeling [18,19,21–23].

With the general deployment of 3G wireless systems, empirical data, both temporal and spatial, are becoming
available. In this paper we conduct a number of controlled experiments for several simple network topologies and
mobility patterns to test the applicability of STARIMA modeling in wireless environments. We study mobility in a
feed forward convergent network, general random mobility in a symmetrical network, and a network with a finite
subscriber population. We evaluate the applicability of these models in a controlled environment before applying
the models to empirical data.

The rest of this paper is organized as follows: In section 2, we review the STARIMA techniques used in our
performance model. In section 3, we present the development of finite-horizon autoregressive models for several
simple topologies and mobility patterns. In section 4, we present some numerical results for several call arrival,
call holding, and dwell distributions under various mobility patterns. The conclusion is given in section 5.

2. Time Series Models

In this section we review the STARIMA models presented by Pfeifer and Deutsch [18,19,21,22] that are based
on common autoregressive models [24].

2.1. STARIMA Process
The space-time ARIMA (STARIMA) class of models presented by Pfeifer and Deutsch [19], and denoted by

STARIMA(pλ1,λ2,...,λp
, d, qm1,m2,...,mq

), is defined in vector form as

∆dz(t) =

p
∑

k=1

λk
∑

l=1

φklW
(l)∆dz(t− k) −

q
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k=1

mk
∑
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ψklW
(l)ε(t− k) + ε(t). (1)

Here, p and q are the autoregressive and moving average orders respectively; λk and mk are the spatial orders of
the kth order autoregressive and moving average terms respectively; ∆dz(t) is the vector of dth order differences
of the observations z(t); φkl and ψkl are the kth order time lag and lth order spatial lag autoregressive and moving
average parameters, respectively; W (l) is the lth order weight matrix; and ε(t) is a vector of random normal errors
defined as

E[ε(t)ε(t+ s)′ =

{

σ2IN s = 0,
0 otherwise.

(2)

The STARIMA process is stationary if every xu that solves
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lie inside the unit circle. If the process is not stationary the STARIMA process can be transformed to an STARMA
process by the application of the difference operator.

The space-time covariance function is

γlk(s) = E

{

[W (l)z(t)]′[W (l)z(t+ s)]

N

}

(4)

and the space-time autocorrelation function is given as

ρl(s) =
γlk(s)

[γll(0)γkk(0)]1/2
. (5)

The space-time partial correlations are

γh0(s) =
k

∑

j=1

λ
∑

l=0

φjlγhl(s− j). (6)

In this paper we use the conditional (MLE) function as proposed in [18]. The conditional likelihood function of
Φ,Θ and σ2 is

L(Φ,Θ, σ2|z) = (2Π)−TN/2(σ2)−TN/2 exp

(

−S∗(Φ,Θ)

2σ2

)

, (7)

where S∗(Φ,Θ) is the conditional sum of squares function

S∗(Φ,Θ) = ε̂′ε̂. (8)

The vector ε̂ is calculated using the expression

ε(t) = z(t) −
p

∑

k=1

λk
∑

l=1

φklW
(l)z(t− k) +

q
∑

k=1

mk
∑

l=1

ψklW
(l)ε(t− k), (9)

where z(t) and ε(t) are set to 0 for t < 1. The MLE’s of the sample values σ̂2, Φ̂, and Θ̂ are

σ̂2 =
S∗

(

Φ̂Θ̂

)

TN
, (10)

where T is the order of the time samples and N is the order of the spatial samples.
The weight matrix W (l) of order l is used to establish the adjacency of sectors and cells. A first-order weight

matrix establishes neighboring cells that share a common border, a second-order matrix establishes regions having a
common border with neighboring cells but not with the original cell itself, etc. A crucial step in model development
is the determination of the weight matrices.

3. Model Development

The evaluation of these models as being appropriate for mobile wireless networks will be based on the method
suggested in [19], also known as the Box Jenkins Method [24] which we outline below.

Identification Stage: The first step is to determine whether the space-time series of observations obtained from
empirical measurements are stationary. This can be determined by computing the space-time autocorrelation func-
tion (ACF) and partial space-time autocorrelation function (PACF) or by using Kalman filtering or other techniques
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Fig. 2. Simulation data for 3 cells

on the data. If the process is not stationary, then the backshift operator can be used to obtain the second-order dif-
ferences (differences of the differences). Then the ACF and PACF are recalculated and the backshift operator is
applied until they display stationarity. Depending on the values of the ACF and the PACF derived from equations
(5)and (6), a candidate model is chosen. This can either be a STAR, STMA, or STARMA or STARIMA model.

Estimation of Parameter Stage: After a candidate STARIMA model is chosen, the parameters φ and ψ are fitted
using MLE estimates using equations (7)-(10).

Diagnostic Checking Stage: The model will be checked against the actual data and simulation models to see that
it accurately represents the dynamics of the observed network behavior. Also, if the model is unduly complex or if
the model does not adequately fit the planning horizon, adjustments may need to be made. Additionally, we check
the autocorrelations and the partial autocorrelations of the residuals to make sure that they are not significant.

4. Numerical Results and Discussion

In this section we study a few common network topologies and simple mobility patterns to evaluate the ability
of the space-time autoregressive models to model the spatial and temporal correlations in the system, and assess
how good the prediction is based on the model we built. The mobility patterns we study are basic mobility models
commonly found in the literature. Analysis of empirical measurements taken for automobile traffic [23] show that
higher order weight matrices are not usually necessary in constructing accurate models, so we restrict our studies
to first- and second-order neighbors.

4.1. Experimental Setup
Synthesized traffic traces are generated that represent non-stationary system behavior over a finite time horizon.

We model call arrivals as steadily increasing, which can be expressed by a univariate time series: Xt = 1.8Xt−1 −
0.8Xt−2 + εt, where X0 is the starting number of calls, and εt is normal (0,1). Subscribers within all cells move
at the same constant velocity, with a mean dwell time in a cell which varies in the different scenarios from 15 to
60 seconds. The dwell time for new calls in a cell will be uniformly distributed. Call holding times are Pareto
distributed with a mean value of 100s to account for heavy-tailed effects from subscribers sending and receiving
data. The number of call requests, both new and handoff, for each cell is sampled every 30 seconds

4.2. Convergent Network
Fig. 1, depicts a small 3 cell network where cell 1 and cell 2 border with cell 3. All 3 cells have the same traffic

pattern, but calls in cell 1 and cell 2 can be handoff to cell 3. The starting point for the call arrival process is X0 =
2, and the dwell time is 15s. The original data trace is shown in Fig. 2. Prediction coefficients are generated using
60 samples. The zeroth- and first-order weight matrices are

W (0) = I, and W (1) =





0 0 0
0 0 0

0.5 0.5 0



 .

Fig. 3 shows the spatial ACF and PACF for the zeroth and first spatial order. The autocorrelation function decays
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Fig. 3. Spatial ACF and PACF

very slowly, which suggest that it may not be stationary. We apply the difference operator on the data and then
compute the spatial ACF and PACF again, the result is shown in Fig. 4. The base lines are 95% confidence bands
which are used to judge the correlation cut off values.

From Fig. 4, we can see that the PACF at spatial lag 0 and 1 both cut off after lag 2. We identify this as STAR
model with the following autoregressive coefficients.

Y [i] = φ01W
(0)Y [i− 1] + φ11W

(1)Y [i− 1] + φ12W
(1)Y [i− 2] + φ13W

(1)Y [i− 3] + ε[i] (11)

where Y [i] = Z[i]-Z[i− 1], Z[i] and ε[i] are vectors of observations and errors.
Using equations (7)-(10) to get the MLE estimates, the values for the autoregressive parameters are φ01 = 0.3627

, φ11 = 0.6397, φ12 = 0.3993, and φ13 = -0.2598.
With the parameters estimated, we check the residual error’s spatial autocorrelation and partial autocorrelation

as shown in Fig. 5. All values smaller than the 95% confidence interval threshold can be viewed as 0, showing that
the model is a good fit.

We use the model to generate a 10 step (300s) prediction as shown in Fig. 6. The dotted line is the point predic-
tion data, the solid line is for the original data, and the points are the 95% prediction interval bounds computed as
Ẑ60[i] ± 1.96

√
iσ2, (see [25].)

From Fig. 6 we can make a number of conclusions: (1) The prediction reflects the basic trend of the data, (2)
The multi-step prediction curve is smoother than the real data, thus predicting general trends, (3) All the real data
falls within the prediction intervals, by which we can conclude that the prediction is good, (4) The prediction error
increases with an increase in prediction steps.
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Fig. 4. Spatial ACF and PACF of differentiated data
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Fig. 5. Spatial ACF and PACF for the residual error

4.3. Symmetrical Network Case
For the second scenario, we study a 9 cell symmetrical network as depicted in Fig. 7. User mobility is symmet-

rical with equal probability of visiting adjacent cells.
Call arrivals and call holding times are the same as for the 3 cell scenario The mean dwell time is 60s, and the

samples times are averages whereas snapshots were taken in the first scenario. The simulation trace is shown for
two neighboring cells numbered 1 and 2 (Fig. 8).

For this scenario, the zeroth- and first-order weight matrices are

W (0) = I, and W (1) =





























0 1/2 0 1/2 0 0 0 0 0
1/4 0 1/4 1/4 1/4 0 0 0 0
0 1/3 0 0 1/3 1/3 0 0 0

1/4 1/4 0 0 1/4 0 1/4 0 0
0 1/6 1/6 1/6 0 1/6 1/6 1/6 0
0 0 1/4 0 1/4 0 0 1/4 1/4
0 0 0 1/3 1/3 0 0 1/3 0
0 0 0 0 1/4 1/4 1/4 0 1/4
0 0 0 0 0 1/2 0 1/2 0





























.

The sampled trace is not stationary, so we apply the difference operator on the data and then compute the Spatial
Autocorrelation Function and Partial Autocorrelation Function. The result is shown in Fig. 9. We then subtract the
difference mean from the sequence generated and the resulting space time autoregressive model is

Y [i] = φ01W
(0)(Z[i− 1] − Z[i− 2]) + φ02W

(0)(Z[i− 2] − Z[i− 3])

+φ11W
(1)(Z[i− 1] − Z[i− 2]) + φ12W

(1)(Z[i− 2] − Z[i− 3]) + ε[i], (12)

where Z[i] and ε[i] are vectors of observations and errors respectively.
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Using equations (7)-(10) to get the MLE estimates, the values for the autoregressive parameters are φ01 = -
0.5409, φ02 = -0.0315, φ11 = 0.6053, and φ12 = 0.6434.

We check the residual error’s spatial autocorrelation and partial autocorrelation, and find that they are sufficiently
close to 0 and we generate a 10 step prediction. The results for cell 1 and 2 are shown in Fig. 10.

4.4. Finite Population Scenario
In this scenario, we study a small network with a finite population. We Assume there are 100 subscribers

in the network depicted in 11. Unidirectional mobility about a ring [7] is considered. The mean dwell time is
exponentially distributed with mean of 100 seconds, samples are taken every 20 seconds.

The zeroth-, first- and second-order weight matrices are

W (0) = I, W (1) =









0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0









, W (2) =









0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0









.

The simulation data trace for the number of subscribers in cell 2 and cell 3 are shown in Fig. 12. Similar to the
computation for spatial ACF and PACF in the previous scenarios, we can see that the data is non-stationary, so we
take the difference and then compute the ACF and PACF again. From Fig. 13, we can conclude that the second
spatial order is not important. So, the differentiated data can be modeled as a STAR1(2) model characterized as

Y [i] = φ01W
(0)(Z[i− 1] − Z[i− 2]) + φ02W

(0)(Z[i− 2] − Z[i− 3])

+φ11W
(1)(Z[i− 1] − Z[i− 2]) + ε[i] (13)

where Z[i] and ε[i] are vectors of observations and errors individually.
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Fig. 9. Spatial ACF and PACF for symmetrical network
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Fig. 10. Prediction for symmetrical network

Using equations (7)-(10) to get the MLE estimates, the values for the autoregressive parameters are φ01 = 0.2800,
φ02 = -0.2858, and φ11 = 0.2727.

We check the spatial autocorrelation and partial autocorrelation of the residual errors, and find them within
acceptable range. The 10 step prediction for cell 2 and cell 3 based on the derived model is shown in Fig. 14. The
prediction data is also acceptable both for point prediction and confidence interval prediction.

5. Conclusions

We have used multi-variate autoregressive models at the network level to investigate the dynamic impact of mo-
bility on these networks for several common mobility patterns with the long range goal being the formulation of a
model framework that will aid in the development of a new generation of wireless network models. These models
are clearly indicated where spatial and temporal correlations exist and can reduce the number of parameters in gen-
erating simulation models. Our current work involves identifying model candidates from empirical measurements
taken from 3G systems and further developing weight matrices based on functions of known mobility character-
istics in the network. Future work will involve the development and assessment of QoS mechanisms that allow
bandwidth to be assigned to cells or regions of the network where the prediction models show it is needed
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