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Abstract: For wireless networks operating during emergency conditions, emergency, handoff,
and new calls are the main kinds of demand. Different operators will have different policies
about which should have higher priority, and how to implement that kind of priority. This
paper focuses on applying queuing methods for admission control for the above three types
of calls. A Weighted Earliest Deadline scheduling method is introduced and evaluated that
provides flexible priority for emergency and handoff traffic. Then an analytical framework for
this scheduling method is given and two new computation methods are provided. These allow
computation of expiration probability and average waiting time, and are simple to use both for
priority queue scheduling and our new Weighted Earliest Deadline scheduling method.
Keywords: Emergency traffic, handoff, aging process, scheduling, priority queuing.

1. INTRODUCTION

Network congestion can happen due to a lot of reasons. In this paper, we mainly focus on
disaster events as they cause congestion in wireless networks. After disaster events happen,
tremendous stress is placed on networks due to the rise in traffic demand, including demand
from general calls and emergency calls. As pointed out in [1,2,3], network demand can be up
to 5 times of normal. Among the traffic demands, emergency traffic should be given higher
priority for saving life and property.

In the wireless cellular network, an ongoing call can handoff to another cell. The goal of a
cellular operator is to try to avoid calls being terminated due to lack of resources when moving
into a new cell. So, the problem to be studied here is how to simultaneously and effectively
support emergency users and handoff calls in a wireless network when congestion happens.
The approaches we can use include preemption, delay-based, or resource conservation policies,
and each has its advantages and disadvantages [4,5]. In this paper, we mainly focus on the delay-
based approach which has been least studied. Our study focuses on a single cell and assumes the
following: (1) all call durations are independently, identically, and exponentially distributed, (2)
after service is completed, each call is terminated or leaves this cell, and (3) there is no handoff
for emergency calls since we assume most emergency users will be stationary within a disaster
area. However, for assumption (3), the model given here can be easily extended to a more
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Figure 1. A Queuing Based Admission Control Policy in a Wireless Network

general situation.
A delay-based policy can also be called a queuing-based policy. The idea is that when con-

gestion happens, new arrivals of high priority calls will be put into queues, and low priority calls
are simply rejected. Figure 1 shows how queuing-based admission control can be implemented
for 3 classes of traffic.

When resources become free, the calls waiting in queues will be served first. By using queues,
the resource utility will be improved, and high priority calls will more likely be admitted than
low priority ones, thus decreasing dropping probabilities for high priority calls. The cost of
using this approach is the delay for the admission of high priority calls (because they need to
wait in queues), and the increase of dropping rates for low priority calls. In contrast, if queues
are not used when congestion happens, all classes of calls will have the same probability to be
dropped regardless of the arrival rate of each class.

In [4], a delay-based policy is used for emergency calls without handoff calls considered,
while in [6] queuing for handoff calls and new calls is introduced based on use of priority
queues. In [7], two queues are used for different handoff calls, priority queuing is used as the
basic tool, and calls are allowed to switch priorities. In this paper, we study the case when
emergency calls, handoff calls, and general new calls coexist. We are not confined to using only
priority queues; instead a flexible queue scheduling method is introduced.

The main contributions of this paper include:
1) Flexible ways to control the admission of emergency traffic and handoff traffic - For our

study case, both emergency calls and handoff calls have priority over new calls. But which one
has the highest priority will be interpreted differently by various operators. And even when one
kind has higher priority over another, it’s hard to say that one class should have absolute priority
over another like priority queuing would enforce. So, based on the above facts, we bring out the
Weighted Earliest Deadline scheduling method. Weighted Earliest Deadline chooses the next
calls to be served based on a configurable weighting between the two classes.

2) Analytical representations for the new scheduling method - We provide 2-dimensional
Markov chain representations of Weighted Earliest Deadline scheduling, and show how priority
queuing is a special case.

3) Low complexity methods for solving the expiration probability and average waiting time
in a 2-dimensional Markov aging process - In [6,7] priority queues are used, and they suggest
using Mason’s rule to compute the expiration probability for low priority calls. But for our
case, using Mason’s rule would be too complex and would have unacceptable computational



complexity, especially when queue length is long. We provide two simpler methods.
The rest of this paper is thus organized: In section 2, the Weighted Earliest Deadline schedul-

ing method is brought out; in section 3, an analytical representation and new simple computa-
tion methods are provided. Section 4 provides evaluation of the effectiveness of the Weighted
Earliest Deadline scheduling method; in section 5, an implementation example is given; and in
section 6, we conclude this paper with a discussion of how these new analytical tools can be
used in new areas of promising research.

2. WEIGHTED EARLIEST DEADLINE SCHEDULING

Since both emergency calls and handoff calls are important, both should be given priority
compared with general new calls. In this paper, priority is implemented through using queues
for emergency and handoff traffic in the following way: when there is no resource available
upon arrival, new calls will be dropped, while a handoff or emergency call will be put into a
queue for that type of call, unless the corresponding queue is full.

Those calls put into queues will not stay there for an unlimited time until they can gain access
to a channel. Instead, it is assumed that users will be impatient and terminate the waiting call
after some time. In other words, we consider the call to be ”expired” when it is terminated due
to impatience.

When there are two or more queues, a simple approach is to use priority queuing, which
will give one queue strict priority over the other queue and a good analytical result can be
obtained. But this absolute priority may create unfair resource allocation. To remove this kind
of unfairness and to have flexibility in admitting two classes traffic, we introduce the Weighted
Earliest Deadline scheduling method, which is modified from the Earliest Due Date (EDD)
scheduling policy [9].

With this method, we consider the remaining lifetime (until expiration) and make a weighted
comparison. For two classes, these weights can be simplified by normalizing one weight to 1,
so all that is needed is one parameter, which is called the balance parameter and denoted as bp.
The scheduling rule is:

If bp(EndureTime[1] - ElapsWaitTime[1])< (EndureTime[2] - ElapsWaitTime[2])
Choose customer in queue 1 to serve

Else
Choose queue 2 to serve

The waiting calls to be compared are always taken from the heads of queues and all calls in a
queue are assumed to have the same average endurance times. EndureTime means the maximum
time this call can wait in the queue and ElapsWaitTime means the time already elapsed while
waiting.

When bp = 1, the result is EDD scheduling. If bp = 0 or bp = ∞, the result is priority queues.
As bp increases, then the likelihood of class 2 calls being chosen will also increase, and there
will be one balance point where class 1 and class 2 calls will be chosen with equal likelihood.
This is discussed in detail in section 3.



Figure 2. State Diagram for 3 Classes of Traffic using Priority Queues

3. ANALYTICAL MODEL FOR WEIGHTED EARLIEST DEADLINE SCHEDULING

We assume the arrival rate of each class of calls to be independently and exponentially dis-
tributed with the rate λ1, λ2, and λ3 for emergency, handoff, and new calls respectively. Service
times are also exponentially distributed and all classes have the same service rate µ. The expira-
tion processes of emergency and handoff calls are also independently exponentially distributed
with rate µ1 and µ2.

As already stated, for Weighted Earliest Deadline scheduling if we set bp = 0 or bp = ∞, then
the result is a priority queue. This case can be easily described using a 2-dimensional Markov
chain as shown in Figure 2 where the state (C, i, j) would correspond to C calls in progress, i
and j calls waiting in their respective queues. But when bp 6= 0 and bp 6= ∞, the system can not
be represented and analyzed using a priority queue anymore. The remainder of this section will
discuss the representation and analysis for this general case.

3.1. Analytical framework for Weighted Earliest Deadline scheduling
For scheduling, the servers can be viewed as being split between two queues. Following is

the analysis of how this split is represented.
We denote Tl1, Tl2 as the remaining lifetime for class 1 and 2 calls. The probability for class

1 calls to be served is: Pr(bpTl1 < Tl2). Define X1 = bpTl1, X2 = Tl2. The remaining lifetime
is exponentially distributed and thus has the memoryless property. It can be shown that X1 is
exponentially distributed with rate µ1

bp
and X2 is exponentially distributed with rate µ2. So:

Pr(X1 < X2) =

µ1

bp

µ2 + µ1

bp

=
µ1

µ1 + bpµ2

(1)

Let A = bpµ2

µ1+bpµ2
(A ≥ 0 and A ≤ 1). We can conclude that the actual service rate for

class 1 calls leaving the queue and entering into service is Cµ(1 − A). This produces the state



diagram for Weighted Earliest Deadline scheduling as shown in Figure 3. Note, for example,
the differences in Figures 2 and 3 for the departures from state (C, 1, 1).

Figure 3. State Diagram for Weighted Earliest Deadline Scheduling

3.2. Computation of expiration probability and average waiting time
Due to limited queue length and limited endurance time for waiting, the calls can fail in two

ways: immediately rejected (blocked) due to a full queue, or dropped after waiting some time
in the queue (expired).

We denote the steady state probability of being in state (C, i, j) as P (C, i, j). These can be
computed as mentioned in [6]. Then, the blocking probabilities of the 3 classes are simple to
obtain:

P 1
B =

N2∑
i=0

P (C, N1, i) P 2
B =

N1∑
i=0

P (C, i, N2) (2)

P 3
B =

N1∑
i=0

N2∑
j=0

P (C, i, j) = 1−
C−1∑

k=0

P (k, 0, 0) (3)

For the computation of expiration probability for emergency and handoff calls, we provide
two methods. The method given in section 3.2.1 is very simple, but the other is more complex
but also more useful because it can also be used to determine waiting times, using a method
similar to that in [6]:

P 1
Exp =

N1−1∑
i=0

N2∑
j=0

P (C, i, j)R1(i + 1, j) P 2
Exp =

N1∑
i=0

N2−1∑
j=0

P (C, i, j)R2(i, j + 1) (4)



R1(i + 1, j) means the expiration probability for the class 1 calls when they enter the system
at state (C, i, j), which means this is for calls entered as the (i + 1)th ones waiting in queue 1.
Similarly, R2(i, j + 1) means the expiration probability for the class 2 calls when they enter the
system at state (C, i, j). With R1(i, j) and R2(i, j), we can also compute the average waiting
time in queue, which is described in section 3.2.3.

In [6,7], the authors use priority queues and suggest a solution to R2(i, j) using the general
gain formula (Mason’s Rule). This requires formidable work especially when queue length is
medium or long, which is difficult to build upon to develop our model for general scheduling.
Instead, we provide a simpler approach to solve R1(i, j) and R2(i, j) for Weighted Earliest
Deadline scheduling in section 3.2.2.

3.2.1. Probability Flow Computational Method for Expiration Probability
First the simpler approach. At a state (C, i, j), the arrival rate for each class is λ1 or λ2, and

the expiration rate for each class is iµ1 and jµ2 independently. The average total number of
departures per unit time from a state for expirations by class 1 is iµ1. Then, the probability of
expiration is the fraction of expirations per unit time over arrivals per unit time, hence iµ1

λ1
. For

class 2 calls this is jµ2

λ2
. Thus, instead of using the equations in (4) which as we will see require

rather complex deduction, we can find the overall expiration probability just based on the steady
state probability, the expiration rate, and the arrival rate at each state as follows:

P 1
Exp =

N1∑
i=1

N2∑
j=0

P (C, i, j)
iµ1

λ1

P 2
Exp =

N1∑
i=0

N2∑
j=1

P (C, i, j)
jµ2

λ2

(5)

Clearly this is a simple approach, but it does not facilitate computation of average waiting
times, so we introduce the other computational method in the next section.

3.2.2. State Transfer Based Computational Method for R1(i, j) and R2(i, j)
Given there are i and j calls in queue 1 and queue 2 respectively, we denote S1(i, j) =

1−R1(i, j) as the probability for the calls at the tail of queue 1 to be successfully served before
expiration, where i=1...N1. Similar definition is given for S2(i, j) = 1−R2(i, j), and j=1...N2.

Now we show how to solve S1(i, j) and S2(i, j). Assume that after a new class 1 call arrives,
the system enters into a middle state (C, i, j) where both i and j > 0 and queues are not full.
After this, the system can transfer to states (C, i− 1, j), (C, i, j − 1), (C, i + 1, j), or (C, i, j +

1) with probability Cµ(1−A)+iµ1

Cµ+iµ1+jµ2+λ1+λ2
, Cµ∗A+jµ2

Cµ+iµ1+jµ2+λ1+λ2
, λ1

Cµ+iµ1+jµ2+λ1+λ2
, λ2

Cµ+iµ1+jµ2+λ1+λ2

respectively.
When transferred to state (C, i − 1, j), the probability for the ith call to expire before any

channel is released and any other i − 1 calls expire is µ1

Cµ+iµ1+jµ2+λ1+λ2
. Thus the probability

for the ith call not to expire when transferred into (C, i− 1, j) is Cµ(1−A)+(i−1)µ1

Cµ+iµ1+jµ2+λ1+λ2

It is important to note that if the system is transferred into state (C, i + 1, j) due to a later
arrival, the ith call in queue 1 which we care about is still in position i, and the calls behind it
will not affect its expiration probability at all. So, the successful probability for the call is still
S1(i, j). Then, we can get:



S1(i, j) =
Cµ(1− A) + (i− 1)µ1

Cµ + iµ1 + jµ2 + λ1 + λ2

S1(i− 1, j) +
Cµ ∗ A + jµ2

Cµ + iµ1 + jµ2 + λ1 + λ2

S1(i, j − 1)

+
λ2

Cµ + iµ1 + jµ2 + λ1 + λ2

S1(i, j + 1) +
λ1

Cµ + iµ1 + jµ2 + λ1 + λ2

S1(i, j) (6)

After simplification this becomes:

(Cµ + iµ1 + jµ2 + λ2)S1(i, j) = (Cµ ∗ A + jµ2)S1(i, j − 1) + λ2S1(i, j + 1)

+(Cµ(1− A) + (i− 1)µ1)S1(i− 1, j) (7)

When considering edge states, for the i = 1 case we have:
(1) j = 0

(Cµ + µ1 + λ2)S1(1, 0) = λ2S1(1, 1) + Cµ (8)

(2) j = 1...N2-1

(Cµ+µ1 + jµ2 +λ2)S1(1, j) = λ2S1(1, j +1)+Cµ(1−A)+ (CµA+ jµ2)S1(1, j− 1)(9)

(3) j = N2

(Cµ + µ1 + N2µ2)S1(1, N2) = Cµ(1− A) + (CµA + N2µ2)S1(1, N2 − 1) (10)

Thus we have N2 + 1 equations, N2 + 1 variables, and a right side not equal to 0. Obviously a
unique solution can be obtained for each S1(1,j).

Then, for i = 2....N1, we have:
(1) j = 0

(Cµ + iµ1 + λ2)S1(i, 0) = λ2S1(i, 1) + (Cµ + (i− 1)µ1)S1(i− 1, 0) (11)

(2) j = 1...N2 − 1

(Cµ + iµ1 + jµ2 + λ2)S1(i, j) = (Cµ ∗ A + jµ2)S1(i, j − 1) + λ2S1(i, j + 1)

+(Cµ(1− A) + (i− 1)µ1)S1(i− 1, j) (12)

(3) j = N2

(Cµ + iµ1 + N2µ2)S1(i, N2) = (Cµ ∗ A + N2µ2)S1(i, N2 − 1)

+(Cµ(1− A) + (i− 1)µ1)S1(i− 1, N1) (13)

Since each S1(i, j) only depends on S1(i−1, j), S1(i, j−1), and S1(i, j+1), these equations
can be solved from i = 2 to N1 step by step. For each step of the computation, the matrix we
need to construct is just (N2 + 1) ∗ (N2 + 1) in dimension.

Similar to the deduction for computing S1(i, j), for S2(i, j) we have:

(Cµ + iµ1 + jµ2 + λ1)S2(i, j) = λ1S2(i + 1, j) + jµ2S2(i, j − 1)

+(Cµ + (i− 1)µ1)S2(i− 1, j) (14)

The detailed equations for boundary cases are similar to those for computing S1(i, j), so these
have been omitted.

With S1(i, j) and S2(i, j) solved using the above equations, we can apply equations in (4) to
get the expiration probability. It has been verified that both this method and probability flow
computational method produce the same results for blocking and expiration probabilities. This
verification, however, was performed experimentally, since analytical verification methods are
yet to be found.



3.2.3. Computation of Average Waiting time
Following a method similar to that in [6], based on the successful service probability at each

state (S1(i, j) and S2(i, j)) computed as in above subsection, it is possible to obtain the average
waiting time for those calls which are successfully served.

Denote W1(i, j) as the expected waiting time taken by those class 1 customers that enter the
queue at the ith position and are later successfully served. It is obvious that

S1(i, j) = Prob(t1exp > W1(i, j)) (15)

where t1exp is the actual expiration time for a particular class 1 call, which is exponentially
distributed with the rate µ1. So,

S1(i, j) = Prob(t1exp > W1(i, j)) = e−µ1W1(i,j) (16)

Thus we can obtain:

W1(i, j) =
−1

µ1

ln(S1(i, j) W2(i, j) =
−1

µ2

ln(S2(i, j))) (17)

The average waiting times for class 1 and class 2 calls are calculated as:

W 1 =

N1−1∑
i=0

N2∑
j=0

P (C, i, j)W1(i + 1, j) W 2 =

N1∑
i=0

N2−1∑
j=0

P (C, i, j)W2(i, j + 1) (18)

4. Evaluation of Weighted Earliest Deadline Using the Analytical Solution

Based on the analytical solutions provided above, the Weighted Earliest Deadline schedul-
ing policy can be evaluated. We will see how good is this policy works and how the balance
parameter bp and different arrival rates affect the dropping rate and average waiting time.

We set the arrival rates for the three classes of traffic to 0.6, 0.6, and 0.2 respectively. The
number of channels is 100; both queues’ lengths are 10. The average call holding time for
all 3 classes ise 100 seconds, and the average expiration time for emergency and handoff calls
are both 10 seconds (in the examples later in this paper, these conditions hold if not specially
specified). Then we change the value of bp. From figure 4 we can see that when bp = 0, the
dropping probability for class 1 is the lowest. With bp increases, the dropping probability for
class 1 also increases, and for class 2 it decreases, while for class 3 there is almost no change.
When bp = 1, class 1 and class 2’s dropping probabilities are equal, which shows the ”balance”
achieved. In contrast, if no queuing were used, all 3 classes would have a dropping probability
of 30.12%.

In Figure 5, we can see that the effect of bp on average waiting time has the same trend as its
effect on dropping probability.

Figure 6 shows the effect as the arrival rate of class 3 increases, and it can be seen how
dropping rates change for the 3 classes of calls. Here the average expiration time of class 2
calls is set at 5 seconds, and bp is fixed at 1, so as expected the performance of emergency and
handoff calls is different. The dropping probability of all 3 classes increases as the arrival rate
of class 3 increase. And after some investigation we find that dropping probabilities all increase
at the same percent, but the average waiting time of class 1 and class 2 (not shown here) didn’t
change with different λ3 values.
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Figure 4. Dropping Probability vs. bp
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Figure 5. Avg. Waiting Time vs. bp

In Figure 7, we show the effect as the arrival rate of class 1 calls increases. The total number
of channels is 60, and bp is fixed at 1. We find that the average waiting time of class 1 and class
2 also increases as the arrival rate of class 1 increases. And the average waiting time for class
1 can even be more than the average expiration time of 10 seconds. This is because in a really
congested case only those calls whose expiration time is very long can wait long enough until
there is a free channel. Figures 6 and 7 show that good further research is possible to explain
these phenomena analytically through exact or approximate calculations.

Through the above the experiments the following conclusions can be made about Weighted
Earliest Deadline scheduling:

(1) The queuing method can help decrease high priority calls’ dropping rates and ensure their
priority over low priority calls.

(2) Through the balance parameter, the dropping probability and average waiting time of the
two higher priority classes can be adjusted to get more ideal performance for a particular class,
and the dropping probability of low priority calls is not affected. The balance parameter just
adjusts the balance between the two priority classes.

(3) An increase in arrival rates of low priority calls will make all 3 classes’ dropping prob-
abilities increase in the same proportion, but will not affect the average waiting time of the 2
high priority classes.
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(4) By using queuing itself, we cannot ensure that high priority calls will not be affected by
changes in low priority traffic demand.

5. EXAMPLE OF APPLYING WEIGHTED EARLIEST DEADLINE SCHEDULING

With Weighted Earliest Deadline scheduling and the analytical solution that is provided, we
can decide the appropriate balance parameter to satisfy a given system’s requirements.
Example: Given are arrival rates for emergency, handoff, and new calls that are 0.2, 0.6, and
0.4 calls/sec respectively. The total number of channels is 100, and average call duration in
each cell is 100 seconds. The average endurance times for waiting in queues are 10 seconds for
both emergency and handoff calls. The requirement is to find the bp that makes the dropping
probability for emergency calls less than or equal to 5%, while also giving the best possible
performance for handoff calls.
Solution: Set emergency calls as class 1 traffic, and handoff calls as class 2. Then given
the characteristic illustrated in Figure 4, we find the value of bp that gives a blocking of 5%
for emergency calls. Then this will also give the best possible performance for the handoff
class after meeting that constraint. The value of 0.1875 for bp is the best value to satisfy these
requirements, which results in blocking probabilities of 0.0497 and 0.0863.

6. CONCLUSION

This paper introduced Weighted Earliest Deadline scheduling to provide a good balance be-
tween different classes of wireless priority calls that are queued if they cannot first find a chan-
nel. The analytical solution for the expiration probability and average waiting time of this kind
of scheduling is provided. The main novel contribution of this work is to provide an analytical
framework for more flexible queue scheduling when using admission control.

We also find that in some cases the dropping probabilities of emergency and handoff calls
are still not ideal by just using the queuing method alone. We have also not yet considered the
relationships between different classes of calls and possible retrying after blocking. Promising
possibilities for future work include: combining the queuing method with one or two other
polices (e.g., using an Upper Limit policy [5] to set a limit on channels used for new calls),
system cost optimization by considering both dropping rate and waiting time, and exploiting
the relationship between handoff calls and new calls, blocking and retrying, etc. The model
presented here, therefore, is a useful tool for answering many of the important questions about
how to allocate resources to wireless calls during emergencies.
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