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Abstract. In this paper we present a method for determining optimal
routes along selected paths in a wireless mesh network based on an inter-
ference aware delay analysis. We develop an analytic model that enables
us to obtain closed form expressions for delay in terms of multipath
routing variables. A flow deviation algorithm is used to derive the op-
timal flow over a given set of routes. The model takes into account the
effects of neighbor interference and hidden terminals, and tools are pro-
vided to make it feasible for the performance analysis and optimization
of large-scale networks. Numerical results are presented for different net-
work topologies and compared with simulation studies.

1 Introduction

Wireless mesh networks are multi-hop access networks used to extend the cov-
erage range of current wireless networks [1]. They are composed of mesh routers
and mesh clients, and generally require a gateway to access backhaul links. Ac-
cess to the medium is either centrally controlled by the base station or distrib-
uted, typically using some form of CSMA/CA protocol.

As pointed out by Tobagi [2], the exact throughput-delay analysis for multi-
hop networks requires a large state space. For large topologies, an exact analysis
is almost impossible, leading us to consider an approximate analysis. Similar
work by Leiner [3] and Silvester and Lee [4], assume that frames are inde-
pendently generated at each node for transmission to a neighbor, whereby the
amount of traffic generated is a function of the topology, routing, and end-to-
end traffic requirements. They also develop a model of the neighborhood around
a node and characterize it with a number of parameters representing average
behavior. Parameters for all nodes are then found through an iterative process.
However, in Leiner’s work, single-hop models are used for the neighborhood
around each node, which means that all of the interfering nodes of a certain
node interfere with each other. This makes the model relatively simple, but
generally not applicable for most multi-hop networks.

In Boorstyn et al. [5], large networks are decomposed into smaller groups and
Markov chains are constructed for those nodes that can transmit simultaneously.



The throughput of the network is then studied, based on the assumption of
Poisson arrivals. The algorithm is iterative, and due to the need to compute all
independent sets in the network, the complexity of the algorithm is prohibitive.
Wang and Kar [6] present work based on the same architecture as Boorstyn,
while paying special attention to the optimal min/max fairness and throughput
with the RTS/CTS mechanism.

Other than the node-group based method proposed by Boorstyn, single node
or flow based methods have also been used in recent research and are generally
scalable to large networks. Carvalho and Garcia-Luna-Aceves [7] present a model
that takes into consideration the effects of physical layer parameters, MAC pro-
tocol, and connectivity. They mainly focus on the throughput of nodes for the
saturated case. Garetto, Salonidis, and Knightly [8] address fairness and starva-
tion issues by using a single node view of the network that identifies dominating
and starving flows and accurately predicts per-flow throughput in a large-scale
network.

We can see that most recent studies mainly deal with throughput and fair-
ness issues. In our work, the model we build is not only suitable for throughput
analysis, but also for delay analysis. Based on our closed form solution for delay,
multi-path route optimization becomes possible. The analytical model we intro-
duce is based on a single node analysis. Interfering nodes and hidden terminals
are taken into account when computing the probability that a node successfully
transmits frames.

The rest of this paper is organized as follows: In section 2 we describe the basic
model and exploit the neighbor relationships to derive solutions using iterative
algorithms. In section 3, the closed form representation of delay at each node is
derived and a corresponding optimization model is introduced. Examples using
our method for the analysis and optimization of wireless mesh networks are
shown in section 4, and section 5 concludes this paper.

2 Basic Model

Similar to work presented in [6] and [8], our model is based on a generic car-
rier sense multiple access protocol with collision avoidance (CSMA/CA). We
generalize on the work of Kleinrock and Tobagi [9, 10] and Boorstyn et al. [5]
to include a finite number of nodes, multiple hops, and interference caused by
routing. Nodes having frames to transmit can access the network if the medium
is idle. If the medium is detected as being busy, a node will reattempt to ac-
cess the medium after a specified time interval. We assume that there is some
mechanism (such as RTS/CTS in the 802.11 standard) that allows the node to
determine if the medium is available or if it must wait and reattempt access to
the channel. We use a nodal decomposition method that relies on an iterative
process to determine the probability that a transmission attempt is successful.

We assume that messages at each node i are generated according to a Poisson
distribution with mean rate λi. All message transmission times are exponentially
distributed with mean 1/µ. Likewise, the channel capacity is taken to be µ. We
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Fig. 1. Markov chain diagram of a single node.

assume an ideal collision avoidance mechanism that can always detect if the
medium is busy or free at the end of a transmission attempt waiting period.
All waiting periods between transmission attempts (backoff periods) are expo-
nentially distributed with mean 1/β, resulting in a geometrically distributed
number of backoff attempts (see Cali et al. [11]). An infinite number of backoff
periods are possible. Each node backs off after a successful transmission to en-
sure fairness. The probability that node i finds the medium free and is able to
successfully transmit a message is denoted as αi. If node A interferes with node
B, then node B also interferes with node A (symmetrical transmission range.)
All successfully transmitted frames are received error free.

In multi-hop networks, some nodes directly interfere with each other and
some indirectly interfere (hidden terminal problem [10].) Those nodes that di-
rectly interfere or are hidden terminals to each other cannot send messages at the
same time. We refer to these nodes as “neighbors” in this paper and introduce
a “neighbor matrix”, N , in section 2.2, to derive these relationships.

Fig. 1 depicts the queueing model for a single node. For each state (l, S) or
(l, B), S means the node is sending (transmitting), B means it’s backing off,
l represents the number of messages waiting in the queue, and L is the queue
length. State 0 means there is no frame at this node, so the node is in idle
state. This is an M/G/1/L model from which the steady state, busy probability,
blocking probability, etc. can be easily derived [12]. Strictly speaking, for internal
nodes in the network that relay messages, the arrivals from different sources can
be correlated with each other, so the total arrival stream will not be Poisson.
However, the assumptions we make allow us use the M/G/1/L model, which
produces results that are extremely close to simulation.

2.1 Calculating successful transmission probabilities

We have defined αi as the probability that node i successfully accesses the
medium during a transmission attempt, so αi is a statistical view of the medium
being idle when node i has a frame to send. Now consider the state of the medium
in the region around node i. There are three possible states for node i: 1) being
“idle”, with probability PI [i], 2) being in “sending” state, with probability PS [i],



and 3) being in “backoff” state, with probability PB [i]. When a node is trans-
mitting frames, we denote this node as being in its “sending” state. Let ρi be
the queuing system utilization of node i, which means this node is either in its
“backoff” or “sending” state, so ρi = PS [i]+PB[i]. Only when it is in “backoff”,
will node i sense the medium (attempt to transmit). The corresponding proba-
bility is ρi − PS [i]. To make sure node i’s attempt is successful, no neighbor of
node i can be sending at that moment, so the probability of a successful attempt
is ρi − PS [i] − ρi ∪k∈ωi

PS [k], where ωi represents all nodes that are neighbors
of node i, and ∪k∈ωi

PS [k] represents the “sending” probability of neighbors as
viewed by node i.

The parameter αi can be interpreted as the probability that node i transmits
successfully given that it attempts to do so.

αi =
ρi − PS [i] − ρi ∪k∈ωi

PS [k]

ρi − PS [i]
=

1 − PS [i]/ρi − ∪k∈ωi
PS [k]

1 − PS [i]/ρi

. (1)

The value of αi is determined by the “sending” probability of node i itself and
its neighbors k ∈ ωi. Likewise, each neighbor k will have node i as its neighbor,
and its successful transmission probabilities will depend on node i. Therefore,
we need use an iterative method to find the value of αi.

In order to compute ∪k∈ωi
PS [k] (the medium busy probabilities as seen by

node i), we need to solve several problems first: Which nodes will prevent node
i from sending? Will all the sending times of neighboring nodes k (k ∈ ωi)
be mutually exclusive? If not, how should we decide the possible nodes that
can transmit simultaneously? (We call them simultaneously transmitting nodes.)
How do we calculate the corresponding simultaneous transmitting probability?
In the following sections we will introduce ways to solve the above problems.

2.2 Neighbor matrix

As mentioned by Jain et al. [13], an interference matrix, F , can be easily con-
figured based on the interference relationship between nodes. However, deriving
hidden terminal relationships is not provided in their paper. Here we provide
a way to identify the hidden terminal relationship based on the known routing
information and the interference relationship. The hidden terminal relationship
and the direct interference relationship will be combined into a “neighbor ma-
trix”, N .

We define a binary routing matrix R to represent the routing relationship.
Denote Rij = 1 if node i sends messages to j, otherwise Rij = 0. In the in-
terference matrix F , if node i and j are interfering with each other, we denote
F ij = 1 and F ji = 1, otherwise F ij = 0 and F ji=0. The algorithm to derive
the neighbor matrix is shown below, (note that all Multiply and Add operations
are Boolean algebra operations.)

Algorithm 1: Neighbor matrix
Step 1: Generate the hidden terminal relationship: Multiply R by F to get a

new matrix H = RF . The hidden terminal information is already embedded in



H, since if node i and j are hidden terminals to each other, there must exist one
or more nodes k such that Rik = 1 (node i wishes to talk to node k) and Fkj = 1
(node k and node j interferes with each other), so Hij =

∑

k RikFkj = 1;
Step 2: Combine the hidden terminal relationship with the direct interference

relationship: let Y = X + F ;
Step 3: Remove the self-neighbor relationship: Change all of the diagonal

elements of Y to 0 (a node is not considered a neighbor to itself). The resulting
matrix is the neighbor matrix N . This matrix incorporates both the interference
relationship and the hidden terminal relationship. Note that Nij = 1 means that
node i and j are “neighbors” to each other; Nij = 0 means that they are not
“neighbors”, allowing them to transmit simultaneously. Since the interference
relationships and the hidden terminal relationships are both symmetrical, N is
a symmetrical matrix. We can now define ωi in equation (1) as the set of nodes
represented by 1’s in the ith row of the neighbor matrix N .

2.3 Simultaneously transmitting nodes

There may be nodes that are neighbors to node i that are neither hidden termi-
nals nor directly interfering nodes with each other. Thus, the probability that two
or more nodes can send messages simultaneously (they do not interfere with each
other, but do interfere with node i) is very important information for calculating
the medium busy probability around node i, which we defined as ∪k∈ωi

PS [k].
When there are 2 nodes that can transmit simultaneously, we call the set of

those nodes simultaneously transmitting pairs denoted as STS2; when there are
3 or more nodes that can transmit simultaneously, we call the set of those nodes
simultaneously transmitting groups and denote them as STS3, STS4.... We de-
fine “group degree” as the number of nodes that can transmit simultaneously.

Algorithm 2: Simultaneously transmitting pairs/groups
Step 1: Take the complementary set of the neighbor matrix N to identify the

simultaneously transmitting pairs. Since this matrix describes the relationship
between any two nodes, we denote it as S2, so S2 = N .

Step 2: For all node pairs (i, j) such that S2,ij = 1 (to avoid the duplication,
we just consider the upper diagonal part of S2), list all possible nodes k (different
from i, j) such that S2,ik = 1 and S2,kj = 1, and put all valid node groups
(i, j, k) into set STS3.

Step 3: For each node group (i, j, k) in STS3, find all possible nodes m
such that S2,im = 1, S2,jm = 1 and S2,km = 1, and put all valid node groups
(i, j, k, m) into STS4. The above process continues until we reach n such that
no n nodes can transmit simultaneously.

2.4 Simultaneous transmitting probabilities

The busy probability of the medium around each node i in the multi-hop envi-
ronment can be calculated as

∪k∈ωi
PS [k] =

X
k∈ωi

PS [k] −
X

(k1,k2)∈STS2

PS [k1k2] +
X

(k1,k2,k3)∈STS3

PS[k1k2k3] − . . . ,(2)



where k1, k2, k3... ∈ ωi. Now we need to calculate the overlapped sending prob-
abilities PS [k1k2], PS [k1k2k3] . . . .

For two nodes that are not neighbors to each other, if they also don’t have
shared neighbors, we assume that they can independently transmit; if they have
shared neighbors, they are independent only during the period when no messages
are being transmitted to or from the shared neighbors. In the latter case, these
nodes can be viewed as “conditionally independent”.

The neighbors of node k1 will be ωk1
= {q : Nk1q = 1}, and the neighbors

of node k2 is ωk2
= {q : Nk2q = 1}. Denote ωk1k2

= ωk1
∪ ωk2

. When both node
k1 and k2 are sending, none of the nodes in ωk1k2

can be sending.

PS [k1, k2] = PS [k1, k2, ωk1k2
] = PS [k1, k2|ωk1k2

]PS [ωk1k2
]. (3)

Since nodes k1, k2 are independent conditioned on the probability that none of
the nodes in ωk1k2

are sending, we have

PS [k1, k2|ωk1k2
] = PS [k1|ωk1k2

]PS [k2|ωk1k2
] =

PS [k1, ωk1k2
]

PS [ωk1k2
]

PS [k2, ωk1k2
]

PS [ωk1k2
]

. (4)

PS [ωk1k2
] represents the probability that no neighbor of node k1, k2 is send-

ing, which can be written as 1 − PS [ωk1k2
] instead. PS [k1, ωk1k2

] represents the
probability that node k1 is sending while all the neighbors of node k1, k2 are not
sending. As we know, neighbors of node k1 must not be sending when node k1

is sending, if we denote ωk2k1
as the nodes that are neighbors of node k2 but

not of node k1, we have PS [k1, ωk1k2
] = PS [k1, ωk2k1

] = PS [k1] − PS [k1, ωk2k1
].

Similarly we can get PS [k2, ωk1k2
] = PS [k2] − PS [k2, ωk1k2

].
After combining equation (3), (4), and the computation for PS [k1, ωk1k2

],
PS [k1, ωk1k2

], and PS [ωk1k2
], the resulting expression is

PS [k1, k2] =
(PS [k1] − PS [k1, ωk2k1

])(PS [k2] − PS [k2, ωk1k2
])

1 − PS [ωk1k2
]

. (5)

The calculation of PS [ωk1k2
], PS [k1, ωk2k1

], PS [k2, ωk1k2
] can be done similarly

by using equation (2). We can get the exact solution by solving the system of
equations, or by using iterative methods. After we get PS [k1, k2], PS [k1, k2, k3]
etc. can be computed similarly.

3 Path Delays and Optimization

If we make the assumption that the queue length is infinite and thus no loss
occurs, we can get closed form solutions for αi, which makes system optimization
possible.

The service time distribution at each node consists of both the transmission
time and the queueing delay (waiting time when frames ahead are transmit-
ting or the node is in “backoff” state). It has a matrix exponential distribution
representation

F (t) = 1 − p exp(−Bt)e′, (6)



where p is the starting vector for the process, B is the progress rate operator for
the process, and e′ is a summing operator consisting of all 1’s [12]. The moments
of the matrix exponential distribution are

E[Xn] = n!pB−ne′. (7)

Based on the Markov chain of Fig. 1, the matrix exponential representation
of the service distribution at each node i is

p =
[

1 0
]

, B =

[

β αi −β αi

0 µ

]

. (8)

Using equation (7), the mean and the second moment of the of the service
distribution at node i are

E[Si] =
1

µ
+

1

αi β
=

µ + αi β

αi β µ
, E[S2

i ] = 2
µ2 + αi β µ + αi

2β2

αi
2β2µ2

. (9)

When the queue is infinite, ρi = λi
µ+αi β
αi β µ

, where λi is the mean arrival rate

to node i. Also, since there is no loss, the “sending” probability will be λi/µ
(percentage of total channel capacity that node i is using). Substituting ρi and
PS [i] into equation (1) and solving for αi, we get

αi =
µ(1 − ∪k∈ωi

PS [k])

µ + β ∪k∈ωi
PS [k]

=
1 − ∪k∈ωi

PS [k]

1 + β/µ ∪k∈ωi
PS [k]

. (10)

Since PS [k] = λk/µ, αi can now be represented in terms of λk – the arrival rate
of each node.

Using the P-K formula for M/G/1 queues, the mean waiting time in the

queue at each node is E[W ] = λE[S2]
2(1−λE[S]) . By substituting the expressions for

the mean and second moment of the service times and noting that the mean
total time spent at node i is E[Ti] = E[Wi] + E[Si], we get

E[Ti] =
µ + αi β − λi

αi β µ − λi µ − λi αi β
. (11)

To express the delay as an optimization problem, we use the following nota-
tion:

K Set of all origin-destination nodes that have traffic.
I Set of communicating nodes in the network.
Λk Average arrival rate for origin destination pair k.
Λ Total arrival rate to the network, Λ =

∑

k∈K
Λk.

Pk Set of possible paths for o-d pair k.
λkj Amount of flow on path j for pair k.
αi Transmission success probability at node i, which is expressed as a

function of the path flow variables λkj using equation (10).



δi
kj Node path indicator: 1 if path j for pair k passes through node i.

Fi Total flow through node i, Fi =
∑

k∈K

∑

j∈Pk
δi
kjλkj .

The optimization problem for minimizing the mean delay a frame experiences
in the network is

min
λkj ,Fi

1

Λ

∑

i∈I

Fi

Fi − µ − αiβ

−αiβµ + Fiµ + Fi αiβ
, (12)

such that
∑

j∈Pk

λkj = Λk, k ∈ K, (13)

∑

k∈K

∑

j∈Pk

δi
kjλkj − Fi = 0, i ∈ I, (14)

λkj ≥ 0, Fi ≥ 0. (15)

The objective function is rational, with polynomials in both the numerator
and denominator. The constraints are linear, so we use a flow deviation algorithm
using the projection method [14] to solve this problem. Convergence is very fast
for the examples we present under the assumption that the network is stable and
the starting point is feasible. Routing strategies based on optimal path delays
and QoS requirements for different traffic classes can also be constructed, but
here we only present the case for mean delay.

4 Numerical Results

4.1 Simulation model

We use CSIM simulation tools to construct the simulation model. If a node has
a frame to transmit, it will first wait one backoff period which is exponentially
distributed with mean 1/β. Upon completion of the backoff period, the node ini-
tiates an RTS to see if the medium is available. We use the same assumptions in
the simulation as in the analytic model, namely, that RTS/CTS communication
is instantaneous and that there are no errors. If the channel is not available, the
node will go into backoff, otherwise the frame is transmitted with a mean time
of 1/µ. Frames are forwarded based on the route indicated in the frame header.

4.2 Evaluation of wireless mesh networks

In this subsection we show the effectiveness of our model by comparing analyt-
ical results to simulation. In the scenarios we show, we assume the maximum
transmission rate is 10 Mbps and the average frame size is 1250 bytes (10, 000
bits), resulting in a mean transmission rate of µ = 1000 frames per second (fps).

For the multi-hop mesh topology depicted in Fig. 2, we show a simple exam-
ple where both node 1 and 2 have frames to send through the gateway to the
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wired network and all other nodes have no frames to send. We use solid lines
with arrows to specify the routing relationship between nodes and dashed lines
between nodes that directly interfere with each other. No lines between nodes
means that they will not interfere directly with each other. For convenience, we
assume node 1 and node 2 have the same arrival rate. We denote the gateway,
GW, as node 7. Also, since the gateway does not send messages upstream on
the same channel, we can omit the direct relationships in the neighbor matrix.
Using the algorithm described in section 2.2, we get

R =

2666666664 0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 0

3777777775, F =

2666666664 0 0 1 1 0 0 0
0 0 0 1 1 0 0
1 0 0 1 0 1 0
1 1 1 0 1 1 0
0 1 0 1 0 1 1
0 0 1 1 1 0 1
0 0 0 0 1 1 0

3777777775, and N =

26666666640 0 1 1 0 1 0
0 0 0 1 1 1 1
1 0 0 1 1 1 1
1 1 1 0 1 1 1
0 1 0 1 0 1 1
1 1 1 1 1 0 1
0 0 0 0 1 1 0

3777777775 .

The comparison of analytical results and simulation results are shown in
Figs. 3 - 5. Since nodes 1 and 2 have the same offered load and interference, they
exhibit the same behavior. Therefore, we just show the performance for node 1.
For the same reason, we only show performance measures for node 5 and not
node 3.

In Figs. 3, 4, and 5, we show the delay, mean backoff times, and blocking
probabilities at various load for nodes having a finite capacity of size L = 100. We
can see that for low load and heavy load, the analytical results match perfectly
with the simulation results, while for moderate load, there is a slight difference.
In total, the analytical results are very good at catching the abrupt increase in
delay as the load increases.

A more complicated scenario is shown in Fig. 6. There is one gateway, nodes
1-5 are actively sending messages, and the other nodes are acting as mesh routers.
The buffer size at each node is 100.

The comparison of simulation and analytical results for the delay at nodes
1, 6, 8, and 9 are shown in Fig. 7 and blocking probabilities are shown in Fig. 8.
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We can see that node 6 and node 8 are the bottlenecks in this network. Note
that the results are accurate over a wide variety of offered loads.

4.3 Optimization results

In a wireless mesh network, nodes can also communicate in ad-hoc mode, which
means that they can transmit frames to peer nodes through other intermediate
nodes. Referring to the topology in Fig. 2, we assume that there are two commu-
nicating pairs. Node 2 is sending to node 6 and node 3 is sending to node 5. The
paths available to node 2 are path 2, 4, 6 and 2, 5, 6 and the paths available to
node 3 are 3, 4, 5 and 3, 6, 5. The mean arrival rate at node 2 and 3 are denoted
as λ2 and λ3 respectively. The path flow variables are denoted as λ246, λ256,
λ345, and λ365. The constraints are λ256 = λ2 − λ246 and λ365 = λ3 − λ345. The
load at node 4 is F4 = λ345 + λ246, the load at node 5 is F5 = λ256, and at node
6 the load is F6 = λ365. Solving the optimization problem (equations (12), (13),
(14), and (15)), we get the optimal routing for different values of λ2 and λ3.
We can see that the system delay function is convex, as shown in Fig. 9. We set
λ2 = 200 fps and λ3 = 230 fps.
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To show the effect of one node’s traffic on the choice of routes, we set the
traffic at node 2 fixed at 200 fps, and then watch the changes of routing and
traffic distribution according to different traffic from node 3. In Fig. 10, we show
the optimal system delay for different loads at node 3, and Fig. 11 shows the
resulting traffic sent through path 2, 4, 6 and 3, 4, 5. We can see that when the
traffic originating from node 3 is low, all segments will take path 3, 6, 5 because
node 4 is heavily interfered and will result in high delay. But traffic from node 2
will take advantage of route 2, 4, 6 since the traffic from node 2 is already high.
As the load at node 3 increases, part of traffic from node 3 will take path 3, 4, 5
and the volume will keep increasing. At the same time, traffic at path 2, 4, 6 will
decrease due to the stronger interference at node 4.

5 Conclusion

In this paper, the neighbor concept is extended to incorporate both directly
interfering nodes and hidden terminals of each node based on the topology and
routing in the network. Based on the relationships of “neighbors”, we use a
node based analysis where an iterative process is used to find the probability



of a successful transmission at each node. To facilitate neighbor identification,
identifying algorithms are provided. For the infinite buffer case, we derive a
means to identify the optimal multipath flow that minimizes the mean delay in
the network. The comparison of simulation and analytical results show that our
analytical method is accurate under both saturated and unsaturated cases.

The evaluation of wireless mesh networks shows that the system performance
is sensitive to the number of interfering neighbors and route selection. For future
work, we plan on adding cost functions to the multipath optimization to insure
QoS fairness for different classes of traffic at each node.
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